Polynomial mixing for time-changes of unipotent flows

نویسندگان

چکیده

Let $G$ be a connected semisimple Lie group with finite centre, and let $M= \Gamma \backslash G$ compact homogeneous manifold. Under spectral gap assumption, we show that smooth time-changes of any unipotent flow on $M$ have polynomial decay correlations. Our result applies also in the case where is volume, non-compact quotient under some additional assumptions generator time-change. This generalizes by Forni Ulcigrai (JMD, 2012) for horocycle flows surfaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representations of Integers by an Invariant Polynomial and Unipotent Flows

Let f be an integral homogeneous polynomial of degree d in n variables. A basic problem in Diophantine analytic number theory is to understand the behavior of the integral representations of integers m by f as m tends to infinity. For each m ∈ N, consider the level variety Vm := {x ∈ Rn : f(x) = m}. For instance, if f(x1, · · · , xn) = x1 + · · · + xn (n ≥ 3), then Vm is the sphere of radius √ ...

متن کامل

Unipotent Flows and Applications

We should think of the coefficients aij of Q as real numbers (not necessarily rational or integer). One can still ask what will happen if one substitutes integers for the xi. It is easy to see that if Q is a multiple of a form with rational coefficients, then the set of values Q(Z) is a discrete subset of R. Much deeper is the following conjecture: Conjecture 1.1 (Oppenheim, 1929). Suppose Q is...

متن کامل

Ratner’s Theorems on Unipotent Flows

. . . . . . . . . . . . . . . . . . . . . . ix Possible lecture schedules . . . . . . . . . . . . . . x Acknowledgments . . . . . . . . . . . . . . . . . . xi Chapter

متن کامل

Ergodicity of Unipotent Flows and Kleinian Groups

Let M be a non-elementary convex cocompact hyperbolic 3-manifold and δ be the critical exponent of its fundamental group. We prove that a one-dimensional unipotent flow for the frame bundle of M is ergodic for the Burger-Roblin measure if and only if δ > 1.

متن کامل

On Unipotent Flows in H(1, 1)

We study the action of the horocycle flow on the moduli space of abelian differentials in genus two. In particular, we exhibit a classification of a specific class of probability measures that are invariant and ergodic under the horocycle flow on the stratum H(1, 1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali della Scuola normale superiore di Pisa. Classe di scienze

سال: 2022

ISSN: ['0391-173X', '2036-2145']

DOI: https://doi.org/10.2422/2036-2145.202011_111